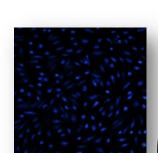

Research activity




Paper chemistry
e 3D-printing
technology per
smartphonebased
biosensors

Biosensori cellulari chemiluminesce nti Sviluppo di biosensori ottici per applicazioni in nutraceutica, medicina e astrobiologia

Nanomateriali Biomimetici (Nanoparticelle, idrogels, aptameri)

In-silico modeling e metodi computazionali per lo sviluppo di biosensori

Chemiluminescence as detection method

Chemiluminescence (CL) is defined as the production of electromagnetic radiation (ultraviolet, visible or infrared) observed when a chemical reaction yields an electronically excited intermediate or product, which either luminesces (direct CL)

$$A + B \rightarrow P^* \rightarrow P + hv$$

CCD (Charge Coupled Device)

CMOS (Complementary Metal Oxide Semiconductor)

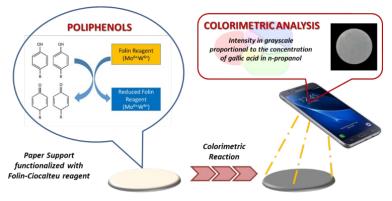
• Sir

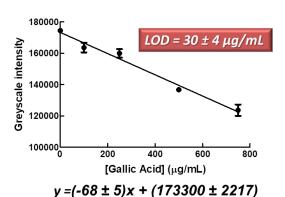
D. Calabria et al. Anal. Biochem., 2020. 600, 113760.

Advantages of Chemiluminescence:

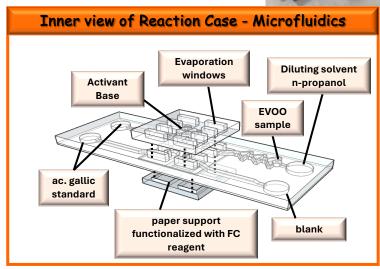
- High sensitive detection (pM)
- High dynamic range
- Simple analytical procedures
- Low cost technique
- Simple and low-cost instrumentation (no need of a source of light)

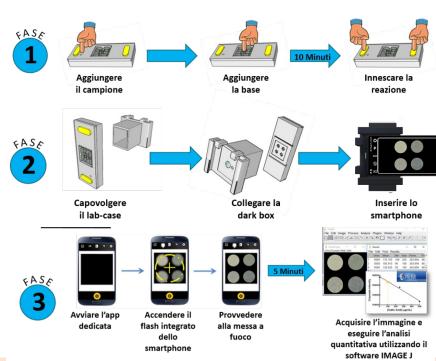
PAPER-BASED SMARTPHONE CHEMOSENSOR FOR REFLECTOMETRIC ON-SITE TOTAL POLYPHENOLS QUANTIFICATION IN OLIVE OIL

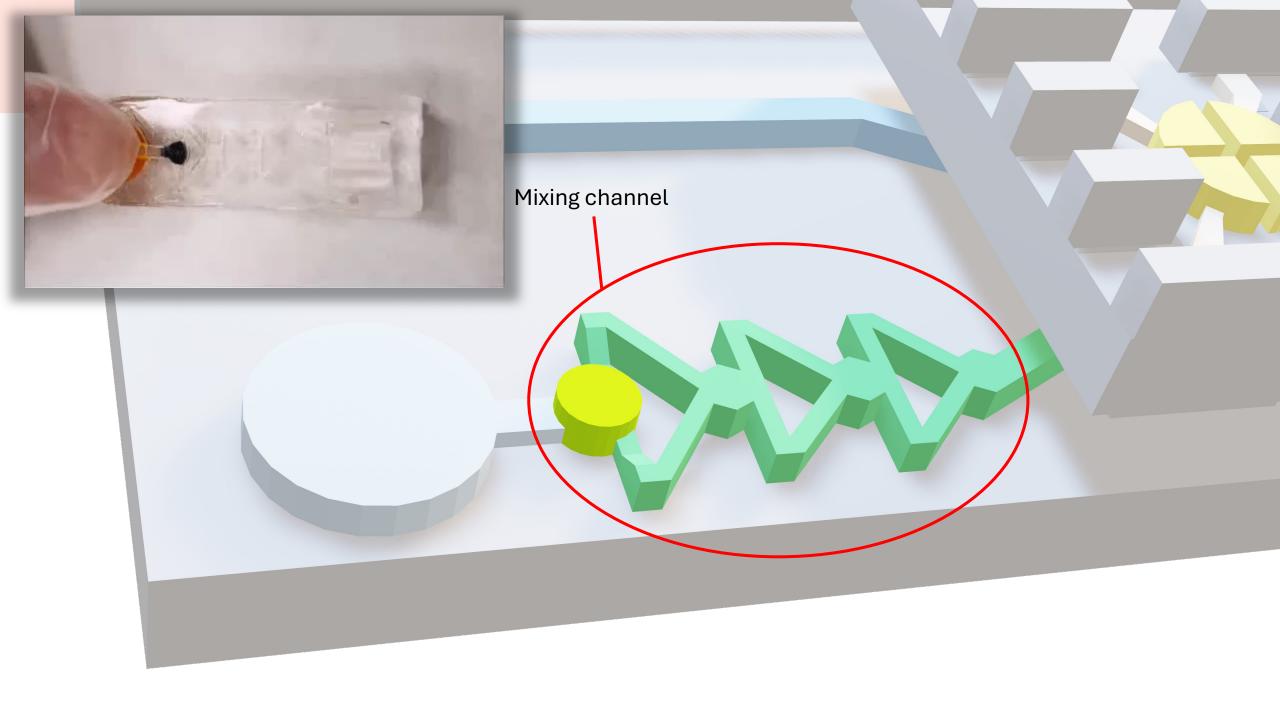



Paper-based smartphone chemosensor for reflectometric on-site total polyphenols quantification in olive oil

D. Calabria^a, M. Mirasoli^{a,b}, M. Guardigli^{a,b}, P. Simoni^c, M. Zangheri^a, P. Severi^a, C. Caliceti^{d,e}, A. Roda^{a,b,e,f,±}






 $R^2 = 0.98$

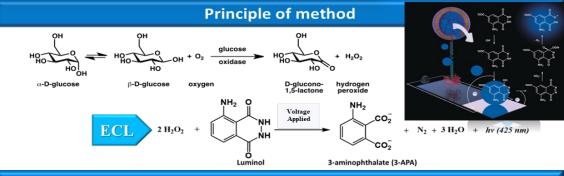
Acknoledgements

The project was funded by Cariplo Foundation within the "Agroalimentare e Ricerca" (AGER) program. Project AGER2 - Rif. 2016-0169, "Valorizzazione dei prodotti italiani derivanti dall'oliva attraverso Tecniche Analitiche Innovative - VIOLIN".

Contents lists available at ScienceDirect

Biosensors and Bioelectronics

journal homepage: www.elsevier.com/locate/bios

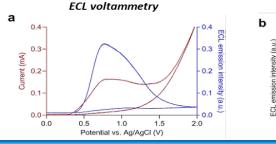

Smartphone-based 3D-printed electrochemiluminescence enzyme biosensor for reagentless glucose quantification in real matrices

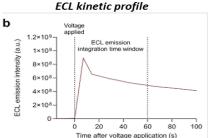
Donato Calabria ^{a,b}, Elisa Lazzarini ^a, Andrea Pace ^a, Ilaria Trozzi ^a, Martina Zangheri ^{a,c,d}, Stefano Cinti ^{e,f}, Marinella Difonzo ^a, Giovanni Valenti ^a, Massimo Guardigli ^{a,b,g}, Francesco Paolucci ^{a,*}, Mara Mirasoli ^{a,b,g,**}

SMARTPHONE-BASED 3D-PRINTED ELECTROCHEMILUMINESCENCE ENZYME BIOSENSOR FOR REAGENTLESS GLUCOSE QUANTIFICATION IN REAL MATRICES

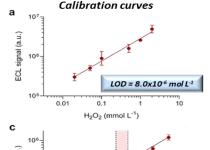
Acknowledgements

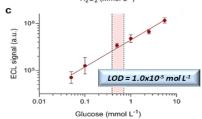
This research was funded by the Italian Ministry of University and Research: PRIN2017 project "Cutting edge analytical chemistry methodologies and bio-tools to boost precision medicine in hormone-related diseases", Prot. 2017Y2PAB8; and PRIN2017 project "Functional 3D architectures for electrochemiluminescence applications", Prot. 2017FJCPEX.

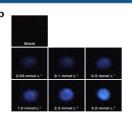


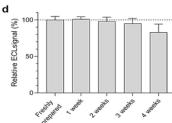

3D printed device

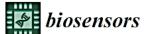
a Voorking electrode (carbode) Spacer Auxiliary Plastic layer with transparent pressure-sensitive adhesive Massirement cell 10 mm

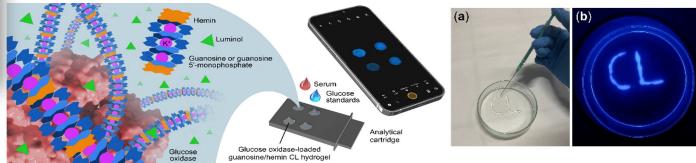

Calabria Donato et al. Biosensors and Bioelectronics 227 (2023): 115146.


Physical-chemical characterization of ECL emission

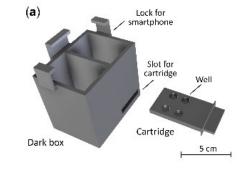


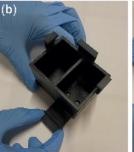


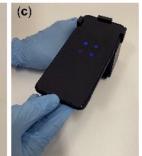

Analytical methods and stability

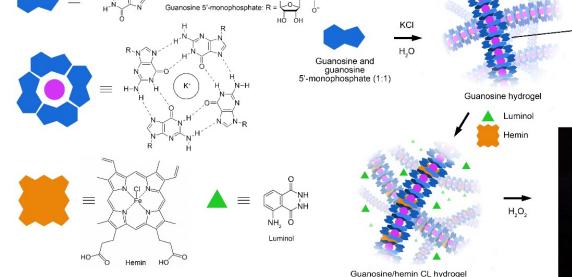

Smartphone-Based Chemiluminescence Glucose Biosensor Employing a Peroxidase-Mimicking, Guanosine-Based Self-Assembled Hydrogel

Donato Calabria 1,20, Andrea Pace 1, Elisa Lazzarini 1, Ilaria Trozzi 1, Martina Zangheri 1,3,40, Massimo Guardigli 1,2,5, Silvia Pieraccini 10, Stefano Masiero 1 and Mara Mirasoli 1,2,5,*0

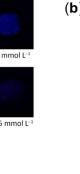

Funding

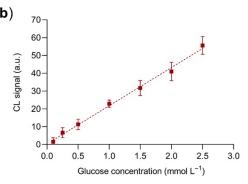

This research was funded by the Italian Ministry of University and Research: PRIN2017 project "Cutting edge analytical chemistry methodologies and bio-tools to boost precision medicine in hormone-related diseases", Prot. 2017Y2PAB8; and PRIN2017 project "Development of novel DNA-based analytical platforms for the rapid, point-ofuse quantification of multiple hidden allergens in food samples", Prot. 2017YER72K; S.M. thanks the EU funding within the MUR PNRR "National Center for Gene Therapy and Drugs based on RNA Technology" (Project No. CN00000041 CN3 RNA).

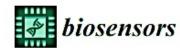

BIOSENSOR EMPLOYING A PEROXIDASE-MIMIKING, Article **GUANOSINE-BASED SELF-ASSEMBLED HYDROGEL**




SMARTPHONE-BASED CHEMILUMINESCENCE GLUCOSE



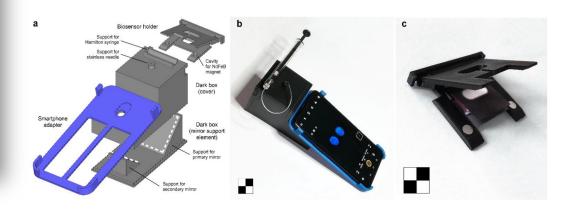




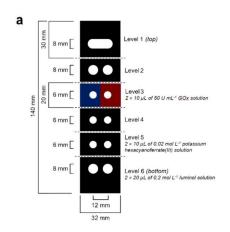
0.10 mmol L-1

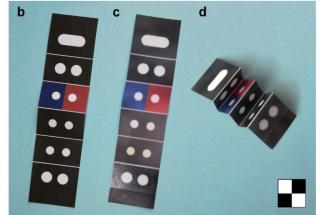
SMARTPHONE-BASED CHEMILUMINESCENT ORIGAMI µPAD FOR THE RAPID ASSESSMENT OF GLUCOSE BLOOD LEVELS

Article


Smartphone-Based Chemiluminescent Origami µPAD for the Rapid Assessment of Glucose Blood Levels

Donato Calabria ¹, Martina Zangheri ^{1,2,3}, Ilaria Trozzi ¹, Elisa Lazzarini ¹, Andrea Pace ¹, Mara Mirasoli ^{1,4,5} and Massimo Guardigli ^{1,4,5},*


Calibration curve for glucose obtained in the optimized experimental conditions. The equation of the calibration curve is $Y = (3.51 \times 10^4 \pm 2.5 \times 10^3)X + (3.3 \times 10^5 \pm 3.9 \times 10^5)$, $R^2 = 0.989$



3D smartphone based device

Origami Paper Biosensor

Funding: This research was funded by the Italian Ministry of University and Research (**PRIN2017** project "Cutting edge analytical chemistry methodologies and bio-tools to boost precision medicine in hormone-related diseases", Prot. 2017Y2PAB8).

AN ORIGAMI PAPER-BASED BIOSENSOR FOR ALLERGEN DETECTION BY CHEMILUMINESCENCE IMMUNOASSAY ON MAGNETIC MICROBEADS

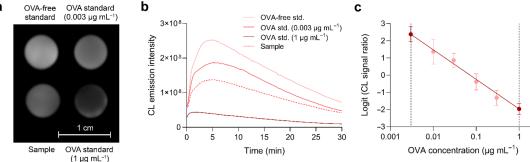
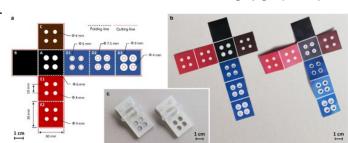
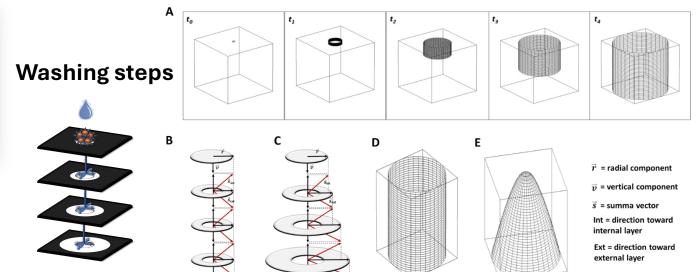
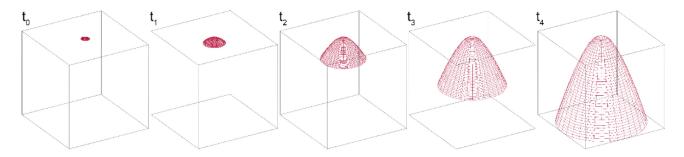




Figure 7. (a) CL image of the origami μ PAD acquired during the assay. The scale bar represents 1 cm. (b) CL emission intensity kinetic profiles obtained by the analysis of the CL images acquired during the assay. (c) Application of the two-standard calibration approach to the calibration data of Figure 6. The readings obtained for concentrations that correspond to the upper and lower limits of the assay working range (dark points) were used to obtain the two-point calibration curve, while the other readings (light points) were simply plotted on the graph.



Vertical flow surface equation system (Figure 4)

3D-surface is described by x(u,t), y(u,t), z(u,t)

$$\begin{cases} x(t,u) = (n_1 + nt^{0.7})cos(2u) \\ y(t,u) = (n_1 + nt^{0.7})sin(2u) \\ z(u) = -n_2 sin(n_3 t) \end{cases}$$
 $n_{i-th} > 0; \ 0 < t < 2\pi; \ 0 < u < \pi$

This research was funded by the Italian Ministry of University and Research (**PRIN2017** project "Development of novel DNA-based analytical platforms for the rapid, point-of-use quantification of multiple hidden allergens in food samples", Prot. 2017YER72K).

Biosensors and Bioelectronics

Volume 226, 15 April 2023, 115110

AstroBio-CubeSat: A lab-in-space for chemiluminescence-based astrobiology experiments

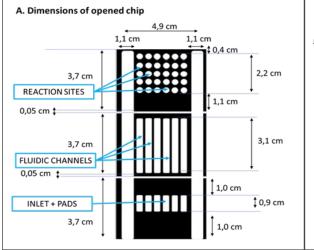
Donato Calabria. ^{a b 1}, Ilaria Trozzi. ^{a 1}, Elisa Lazzarini. ^a, Andrea Pace. ^a, Martina Zangheri. ^a, Lorenzo Iannascoli. ^c, Nithin Maipan Davis. ^c, Sagar Sarvad Gosikere Matadha. ^c, Thiago Baratto De Albuquerque. ^c, Simone Pirrotta. ^d, Marta Del Bianco. ^d, Gabriele Impresario. ^d, Liyana Popova. ^e, Nicola Lovecchio. ^f, Giampiero de Cesare. ^f, Domenico Caputo. ^f, John Brucato. ^g, Augusto Nascetti. ^c. ^A, Massimo Guardigli. ^{a b}, Mara Mirasoli. ^{a b}. ^A

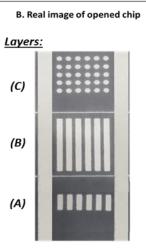

ASTROBIO-CUBESAT: A LAB-IN-SPACE FOR CHEMILUMINESCENCE-BASED ASTROBIOLOGY

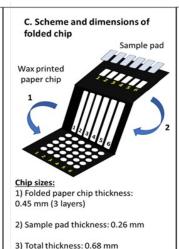
EXPERIMENTS

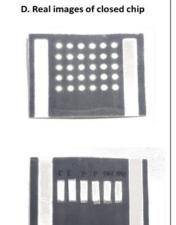
Searching for signs of past or present life is a high-priority task for the astrobiological exploration of our Solar System. Following a bioanalytical approach, a variety *in-situ* microfluidic analytical devices have been proposed for detecting target life biomarkers through an array of biospecific recognition reactions.

Extraterrestrial traces and origin of life researches by astrobiological biosensors




The ABCS project aims at the development of a CL-based fully autonomous analytical platform for the execution of multiple enzyme-based bioassays in a nanosatellite platform.


ABCS hosts a **micro laboratory** based **on Lab-on-Chip technology** able to provide a platform for an automatic bioanalytical experiments in space.

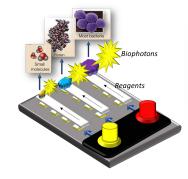

The target applications are:

- > Search for signs of life in planetary exploration missions;
- Space biolabs without human support;
- Health monitoring in manned missions.

Acknowledgments: ABCS
AstroBio-CubeSat is
supported by ASI - Italian
Space Agency ASI/INAF
Agreement n. 2019-30-HH.0

Biosensors and Bioelectronics

Volume 226, 15 April 2023, 115110


ASTROBIO-CUBESAT: A LAB-IN-SPACE FOR CHEMILUMINESCENCE-BASED ASTROBIOLOGY EXPERIMENTS

AstroBio-CubeSat: A lab-in-space for chemiluminescence-based astrobiology experiments

Donato Calabria ^{a b 1}, Ilaria Trozzi ^{a 1}, Elisa Lazzarini ^a, Andrea Pace ^a, Martina Zangheri ^a, Lorenzo Iannascoli ^c, Nithin Maipan Davis ^c, Sagar Sarvad Gosikere Matadha ^c, Thiago Baratto De Albuquerque ^c, Simone Pirrotta ^d, Marta Del Bianco ^d, Gabriele Impresario ^d, Liyana Popova ^e, Nicola Lovecchio ^f, Giampiero de Cesare ^f, Domenico Caputo ^f, John Brucato ^g, Augusto Nascetti ^c ^c, ^m, Massimo Guardigli ^{a b}, Mara Mirasoli ^{a b} ^c, ^m

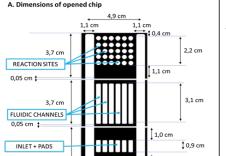
Searching for signs of past or present life is a high-priority task for the astrobiological exploration of our Solar System. Following a bioanalytical approach, a variety *in-situ* microfluidic analytical devices have been proposed for detecting target life biomarkers through an array of biospecific recognition reactions.

Extraterrestrial traces and origin of life researches by astrobiological biosensors

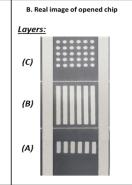
Evolution time line Purines - Metabolites of Life (DNA, etc) XOD Hexacyanoferrate (III) hemin HRP Signal - Response

Artificial
Arthrobacter sp.
Bacteria cells *
*Arthrobacter sp.
Photograph by Dennis
Kunkel Microscopy

Signal – Response of Life activity

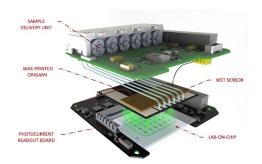

The selected biomarkers of astrobiological interest are compounds at the basis of several fundamental biochemical reactions of life

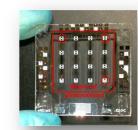
The ABCS project aims at the development of a CL-based fully autonomous analytical platform for the execution of multiple enzyme-based bioassays in a nanosatellite platform.

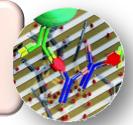

ABCS hosts a **micro laboratory** based **on Lab-on-Chip technology** able to provide a platform for an automatic bioanalytical experiments in space.

The target applications are:

- Search for signs of life in planetary exploration missions;
- > Space biolabs without human support;
- > Health monitoring in manned missions.




Evolution of complexity of biorganic systems


Acknowledgments: ABCS AstroBio-CubeSat is supported by ASI - Italian Space Agency ASI/INAF Agreement n. 2019-30-HH.0

Biosensori per applicazioni nello Spazio

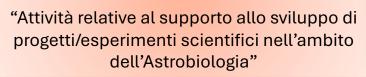
MEDICINA NELLO SPAZIO

APHRODITE

Autonomous PHotosensing Reusable
Onboard Device for Immunological
Tests Execution

WEAR-ME!

sistema integrato miniaturizzato indossabile per il monitoraggio non invasivo del wound healing nell'astronauta



Beatrice Fraboni – Dipartimento di Fisica, Università di Bologna

ASTROBIOLOGIA

BESIDES

BiomolEcular SIgnature DEtection
System

VALUTAZIONE EFFETTI RADIAZIONI SU SISTEMI BIOLOGICI

ALCYONE

Autonomous Living Cell analYsis ON-chip for Evaluation of space Environment Effects:

low-power integrated lab-on-chip for the assessment of radiation damage on living systems in nanosatellite missions nell'ambito del Programma Quadro HORIZON EUROPE

BOREALIS

Biofilm Onboard Radiation Exposure Assessment Lab
In Space

migliorare le tecniche di design degli schermi da radiazioni e le valutazioni dosimetriche in vari scenari di missione.

